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Abstract. We have studied the electronic transport properties of various topological mesoscopic
rings which consist of several variable-size chains joined at their ends to form ideal single-
channel leads. An enhancement of the transmission coefficient is obtained when the chain
lengths are randomly distributed, due to the suppression of interchain interference, and, in the
presence of magnetic flux, periodic magnetoconductance oscillations are also shown. A single
impurity changes the magneto-oscillation pattern drastically, while for more impurities placed
at random the periodic magnetoconductance oscillations survive. Finally, the introduction of
a transverse link between the chains destroys the bridge-arc shape of the transmission versus
energy curves obtained in the absence of such a link.

1. Introduction

In recent years electronic transport properties of mesoscopic structures have been extensively
investigated both experimentally and theoretically [1–3]. This is not only due to recent
advances made in microtechnology which allowed the fabrication of such microstructures
but also to the strong need for building microelectronic devices for technological purposes.
Most device concepts rely on quantum interference phenomena [4, 5] which are generally
expected to wash out for larger devices, due to the fact that only for small enough sizes and
at sufficiently low temperatures does the quantum wave function maintain phase coherence
across the sample. In the quantum coherent case, idealized samples behave as electron
waveguides, and the electronic transport properties are solely determined by the geometry
of the conductor, as well as the topology of the impurity distributions [6, 7].

Quantum transport in two-arm mesoscopic rings has attracted considerable attention
since it represents an experimental realization of the Aharonov–Bohm (AB) effect [8–11].
Waves propagating from left to right along the two branches of a ring suffer phase shifts
which lead to constructive or destructive interference patterns at the right-hand contact.
Moreover, the flux-dependent conductance isφ0-periodic, with φ0 the flux quantum, as
shown by one-dimensional (1D) disordered metallic rings with a magnetic field [12]. The
electronic transport through extended AB rings which consist of more than two chains has
also recently been studied [13]. In a perfect multi-arm ring connected to single-channel
ideal leads, the conduction band splits into many sub-bands due to the geometry of the
electrodes, and the magnetoconductance shows a very complicated oscillating behaviour in
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comparison with the common two-arm-ring AB effect. Moreover, in the limit of large chain
numbers the conductance rapidly approaches zero for most energies, and interesting wave
blocking or ‘localization’ is obtained, due to quantum interference rather than disorder [13].

In the present paper we study the quantum transport properties through similar
mesoscopic ring geometries made of several chains with fixed or random lengths,
complementing and extending the previous results [13]. For structures with random
chain lengths we obtain average transmission enhancement due to the suppression of
interchain interference. In the presence of a magnetic flux we still observe periodic
magnetoconductance oscillations with increased average conductance when the variance
of the random chain length distribution increases. We have also studied doped multi-
chain structures by adding one or more impurities. The presence of a single impurity
is shown to change drastically the magneto-oscillation pattern, while for many impurities
the magnetoconductance still exhibits periodic oscillations. Moreover, the introduction
of a transverse link between the chains is shown to destroy the bridge-arc shape of the
transmission versus energy diagram obtained without such a link [13].

In section 2 we introduce the basic model and the formulae which are used in this paper.
The results obtained and their analysis are described in section 3. Finally, the last section,
section 4, is devoted to a summary of our conclusions.

(a)

(b)

Figure 1. A schematic picture of the single-lead topological systems studied: (a) a singly
connected multi-arm structure, and (b) a doubly connected two-arm structure.

2. The model and formulae

The geometry of the topological structures studied shown in figure 1(a) is a ring with many
chains connected to perfect left-hand and right-hand single-channel leads at the nodes 0 and
s. The transmission through this system can be studied by considering a plane wave incident
from the right so that the corresponding wave function coefficients in the ideal leads can
be written asaj = e−ikj , for j 6 0, andaj = Ae−ik(j−s) + Reik(j−s), for j > s, where
k = cos−1(E/2) is the wave vector corresponding to the pure chain lead,E the incident
energy, andA (R) the amplitude of the incident (reflected) wave. We take unit transmission
amplitude and assume narrow enough width of the structure considered compared to its
length that experimentally our system corresponds to a network of high-mobility narrow
quantum wires where only the lower sub-band is sufficiently populated. In this picture the
branches of the ring can be safely treated as 1D channels.

In the absence of inelastic scattering, the electronic transmission through the multi-chain
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ring can be described by the tight-binding Hamiltonian

H =
N∑
α=1

Nα∑
i=1

εα,ic
†
α,icα,i − t0

N∑
α=1

(
c
†
0 cα,1+ eiφα c

†
α,Nα

cs +
Nα−1∑
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c
†
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(1)

wherecα,i (c
†
α,i) annihilates (creates) an electron on sitei of chain α, the two lead node

sites are labelled by 0 ands, Nα is the number of sites in theαth chain (excluding the nodes
0 and s), andN is the total number of chains. The Hamiltonian includes both diagonal
disorder and electrostatic bias applied in the transverse direction, taken into account via
the on-site energyεα,i . We assume that the applied bias generates a potential difference
only between the neighbouring (N − 1)th andN th chains in the present geometry. The
significant point which allows a simple numerical treatment of the problem is that the
chains are connected to form ideal single-channel leads at their ends 0 ands. We can also
make the convenient choice of the gauge of the vector potential to affect only the phase
of the wave functions at the hopping bonds between the right-hand chain ends (sitesNα,
α = 1, 2, . . . , N) and the right-hand nodes. This choice for the magnetic field is expressed
via the third term of equation (1), with the phase differenceφα − φα−1 proportional to the
flux HWα, α = 2, 3, . . . , N , with H the strength of the field, andWα the area enclosed by
the αth and the(α − 1)th chains. For convenience, we choose the phase of the first chain
φ1 = 0 and the hopping strengtht0 = 1, which defines the energy unit throughout the paper.

The boundary conditions at the two nodes 0 ands present a serious difficulty which
can be solved, making Griffith’s choice, by introducing the requirements that the wave
functions are single valued and the current density is conserved (Kirchhoff’s law) [14]. The
wavefunction component for thej th site of theαth chain reads

ψα,j = Aαei(k+θα)j + Bαe−i(k−θα)j (2)

whereθα = φα/Nα, and the requirements of single-valued functions and continuity at 0,s

lead to the equations

ψ1,0 = ψ2,0 = · · · = ψN,0 ψ1,N1+1 = ψ2,N2+1 = · · · = ψN,NN+1 (3)

at the two node points 0 ands = Nα + 1, α = 1, 2, . . . , N . A numerical solution of
equations (1)–(3) is the central point of the present work. In the absence of impurities,
there are 2N unknown coefficients; hence equation (3) is complete at the two nodes, and
the wave function can be readily evaluated for all sites involved in the structure. The
transmission coefficientT = 1/|A|2 measures the transparency of the system and allows
one to obtain theE-dependent dimensionless conductanceσ(E) = T (E) from Landauer’s
formula [15]. In reference [13] an analytical formula was possible for such multi-arm
mesoscopic rings, also with an imposed flux or electrostatic potential, but in the absence of
impurities, diagonal disorder, and transverse crosslinks.

It may also be worth mentioning that the commonly accepted symmetry of the
transmission coefficient,t (E) = t (−E) without magnetic field and/or disorder, due to
the electron–hole symmetry, although rarely found experimentally was satisfied in our case
when all the chains had either even or odd numbers of sites. If some chains have even and
others odd numbers of sites,t (E) 6= t (−E). This can be checked from equations (1)–(3)
by observing that a projectionE → −E corresponds to eikNα → (−1)Nαe−ikNα . After
some algebra we can show thatt (E) = t (−E) only if all of the chains have even (or all
have odd) numbers of sites; otherwiset (E) 6= t (−E), in agreement with our numerical
findings. The asymmetry of the transmission coefficient is due to the special geometry
of the structure considered. The influence of the number of atoms on the symmetry of
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Figure 2. The transmission coefficient as a function of energy for structures which consist of
ten chains with random lengths uniformly distributed in [L− δL,L+ δL], with L = 1000, the
incident-electron energy fixed atE = 1.1, and obtained by taking the ensemble average over
100 random configurations. (a)δL = 0, (b) δL = 100, and (c)δL = 500.

Figure 3. The conductance as a function of energy for structures each composed of a hundred
chains with lengths uniformly distributed in [L− δL,L+ δL], L = 1000, the incident-electron
energy fixed atE = 1.1, and the ensemble average taken over 200 random configurations.
(a) δL = 0, (b) δL = 10, and (c)δL = 100.
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the magnetoconductance was pointed out in reference [16], where a similar conclusion was
reached for a mesoscopic ring subjected to magnetic flux. Our study generalizes this finding
for the many-chain topological structures, also in the presence of impurities.

3. Numerical results and discussion

We present results obtained by varying the number of chains involved in the structure as
well as their lengths, and show that the splitting of the band into many sub-bands can
seriously modify the transport properties of the system.

3.1. Chains of variable lengths

Equation (10) of reference [13] gives an exact expression for the transmission coefficient for
a multi-chain Aharonov–Bohm ring with arbitrary chain lengths in the absence of impurities.
In figure 2 we plot the energy-dependent transmission coefficient for a ten-chain structure
with various values for the variance of the random length distribution. We observe average
transmission enhancement when the randomness in the chain lengths becomes stronger. The
magnetoconductance pattern is shown in figure 3 for structures each composed of a higher
number of chains (100), and for fixed chain lengths (figure 3(a)) the curves show the usual
principal and secondary maxima [13]. For random chain lengths, periodic oscillations can
be still observed with enhanced conductance on average. The higher average transmission
obtained can be attributed to the suppression of interference, since variations in the chain
lengths cause the phases of the waves for different chains to become uncorrelated. In the
presence of magnetic flux the magnetoconductance displays similar behaviour.

3.2. Chains with few impurities

A single defect added at any site of the multi-chain structure can significantly modify the
band obtained. In figure 4(a), transmission zeros can be seen in the absence of magnetic
field and impurities. A single impurity added at the centre of one of the chains is shown
to strongly modify the transmission pattern obtained (figure 4(b)). Physically, this can
be understood on the basis of the total transmission probability which is related to the
interference pattern via a sum over all paths, starting from node 0 and ending at nodes.
In the presence of one (figure 4(b)) or more (figure 4(c)) impurities the paths are strongly
influenced by the impurities; hence the interference in the sum changes and the transmission
probability becomes extremely sensitive to the presence of impurities.

In figure 5 we consider the evolution of the band structure as a function of the magnetic
flux φ, and we can see oscillations with period 9φ0 [13]. This periodicity does not seem
to change in the presence of disorder, in agreement with reference [13], where chain length
variations were also considered. We have previously observed [13] that the period of
magnetic oscillation for anN -chain loop is the sum of the periods of the loops formed
by nearest-neighbour chains. The period in the present case is also(N − 1)φ0 which is
also the sum of all the loop periods. Moreover, in figure 5(a) the magnetic field is shown
to induce destructive interference effects, with manyφ-values with zero transmission. In
figures 5(b) and 5(c) the presence of impurities is seen to erase these zero-transmission
points, causing a remarkable change of the interference pattern obtained. We also notice
that the eight subsidiary maxima in the absence of disorder (figure 5(a)) reduce to seven in
the presence of one impurity. Generally, for anN -chain ring structure without impurities,
the magneto-oscillation periodicity and the number of subsidiary maxima areN − 1 and
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Figure 4. The transmission coefficient versus energy for a ten-chain structure also with
impurities. The site energy of the impurity is equal to 3.0 and the length of the chains is
2000. (a) No impurity, (b) one impurity at the centre of one chain, and (c) four impurities
randomly distributed for a single configuration.

Figure 5. The transmission coefficient versus the magnetic flux threaded in a structure with
impurities; the rest of the parameters are as in figure 4, and energyE = 1.1. (a) No impurity,
(b) one impurity at the centre of one chain, and (c) four impurities randomly distributed for a
single configuration.
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Figure 6. The transmission coefficient versus the energy for structures composed of various
numbers of chainsN with the chain length fixed to 1000, forN = 2, (solid line),N = 6 (dashed
line), N = 20 (dotted line), andN = 80 (dashed–dotted line).

Figure 7. The transmission coefficient versus the electron energy for various electrostatic
potentials with chain lengths equal to 1000. (a)V = 0, (b) V = 0.05, (c) V = 0.1, and
(d) V = 0.2.

N − 2, respectively [13]. This may be due to changes of interference caused by impurity
scattering. In the presence of a single impurity, the magneto-oscillation periodicity does not
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Figure 8. A comparison between energy-induced and electrostatic AB oscillations, with the rest
of the parameters as in figure 6. The transmission versus the electron energy (solid line), and
the transmission versus the electrostatic potential (dashed line).

change but the number of subsidiary maxima decreases fromN − 2 to N − 3, while more
impurities give a rather complicated plot (figure 5(c)).

3.3. Energy- and voltage-induced oscillations

We have investigated energy- and voltage-induced oscillations of the multi-arm structure
considered. Firstly, in figure 6 we consider the energy-induced oscillation where the
conductance curves show periodic oscillations depending on the electron energyE.
Moreover, the conductance exhibits peaks whenE coincides with an eigen-energy of
the system, and for large numbers of chains the band splits into minibands with sharper
conductance peaks. The physical reason for this behaviour is the lack of propagation,
or ‘localization’, for the majority of states, in this case due to the band splitting, despite
the absence of disorder and/or interchain coupling. This is again a result of quantum
interference, except for the resonance points where the transmission takes a simple resonant
form (figure 6). For more chains(N = 80) the ratio between the periodicity and the width
of the resonance peak found is nearly one hundred.

We have also studied the energy-induced oscillations due to the influence of an
electrostatic potential applied in the transverse direction. In figure 7 we show the conduct-
ance for various potential differences between one chain and the others. The modulation
of the conductance oscillations by the electrostatic potential arises from variations in the
relative phase shifts. If the voltage increases, the periodic behaviour remains unchanged,
although the transmission pattern may exhibit a different shape. A vanishingly small voltage
gives a bridge-arc shape of the conductance in the bulk band region [13], while a higher
voltage modifies the position and the sharpness of peaks, and there are a few new sharp
peaks.
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In figure 8 we observe the periodφE of the energy-induced oscillations to be exactly
double the voltage-induced oscillation periodφV , which can be deduced from the analytical
expression for the conductance (equation (10) of [13]). In this case the periodicities occur
at 1k L = nπ , wheren is any integer. The voltage-induced oscillations arise from phase
shifts in the different paths which vary as a function of the incident-electron energy [17].
The electrostatic phase shift is given by1φ = (k′ − k)L, where k = cos−1(E/2) and
k′ = cos−1((E+V )/2). Thus, if the period of the voltage-induced oscillation is1φ = 2nπ ,
the corresponding energy-induced oscillation period is1φ = 4nπ .

Figure 9. A comparison of the transmission for singly connected AB rings and that for doubly
connected AB rings. (a) A singly connected AB ring with chain lengths equal to 2000, and
(b) a doubly connected AB ring with each arm segment equal to 1000 and rung length 1000.

3.4. Doubly connected AB rings

We have also examined the conductance of doubly connected structures (figure 1(b))
assuming, for simplicity, perfect ballistic transport. The classical counterpart of a doubly
connected ring corresponds to a Wheatstone bridge circuit which, if balanced, has a
conductance independent of the variation of the ring resistance. The quantum case is
clearly much more complicated. In figure 9 we plot numerical results for the transmission
band in this case, and for doubly connected rings the bridge-arc shape exhibited for singly
connected two-arm AB rings is completely destroyed. In figure 9(b) we can see transmission
zeros due to destructive interference. In the doubly connected ring the additional two nodes
(figure 1(b)) provide additional destructive interference at the exit. In figure 10 we expand
figure 9 in greater detail and report oscillations with elegant periodicities. It is interesting
to notice that the periodicity of (a) is half that of (b), that of (b) half that of (c), and that
of (c) a quarter that of (d). The improved periodicity arises from the increase in the node
number and the variations in the chain lengths.

In our study of doubly connected rings we have also considered the influence of the rung
length on the magnetoconductance oscillations. The rung length is defined as the crossing
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Figure 10. The comparison of electronic transmission via singly and doubly connected AB
rings. (a) and (b) are for singly connected AB rings with chain lengths equal to 2000 and 1000,
respectively; (c) and (d) are for doubly connected AB rings, where each arm segment length is
equal to 1000 and the rung lengths are 0 and 1000, respectively.

Figure 11. The conductance versus the magnetic flux for the doubly connected AB ring with
length segments equal to 1000 and the incident-electron energy fixed at 1.1. The rung length is
chosen as (a) 1000, (b) 500, and (c) 0, and (d) is for an ordinary AB ring with chain lengths
2000.
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length of a doubly connected structure; for zero rung length, a doubly connected ring simply
reduces to two attached singly connected rings. In figure 11 we show the conductance
oscillations as a function of the magnetic flux with rung length variations. In both cases
the curves show periodic magneto-oscillations governed by strong field dependence, and
the patterns can be modulated by varying the rung length. Moreover, from figure 11(c)
and figure 11(d) we observe many zero-transmission points inside the allowed band which
could play a very special role in band engineering technology.

Figure 12. The conductance versus the magnetic flux for a doubly connected AB ring with
different partitions of the magnetic flux; each arm segment is 1000 and the rung length is also
1000. (a)φ2 = 0, (b) φ2 = 1

2φ1, (c) φ2 = φ1, and (d)φ2 = 3φ1.

A metal–insulator transition can be induced by varying the magnetic field strength, while
the interference patterns obtained which show magneto-oscillation periodicities depend on
the distribution of the magnetic flux between the closed paths. In figure 12 we show the
electronic conductance for a doubly connected AB ring structure with magnetic flux periods
(a) φ0, (b) 3φ0, (c) 2φ0, and (d) 4φ0. One can easily deduce the relation between the period
of oscillation and the distribution of the magnetic fluxes, noticing that the phase shift for
every chain must be an integer multiple of 2π . These results are consistent with those
obtained for singly connected multi-arm rings [13].
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4. Discussion

Mesoscopic systems provide the most elegant and instructive tool for the study of quantum
mechanical interference phenomena of one-particle wave functions. In the case of multi-arm
rings with single-channel leads, the electron waves incident from the left split and recombine
at the exit with coherent multi-interference effects. The induced phase changes are not the
same for different paths of propagation, which leads to rather complicated interference
patterns. We findt (−E) 6= t (E) for the transmission coefficient in the absence of magnetic
fields when some chains consist of odd and others of even numbers of sites. The familiar
conditiont (E) = t (−E), due to the electron–hole parity symmetry, is recovered only when
the chain lengths are all even or all odd. Moreover, an averaged transmission enhancement is
obtained for random chain lengths from the suppression of quantum interference. A single
impurity in the structure is shown to modify the magnetoconductance oscillation pattern
non-trivially, but its periodicity is maintained. Finally, we studied doubly connected AB
rings exposing the differences from their singly connected counterparts. We show that the
additional nodes present in doubly connected structures provide extra interference effects
and transmission zeros for certain energies whilet (−E) = t (E) is satisfied. Moreover,
we demonstrate how the conductance pattern can be modulated by varying an appropriately
defined rung length in these structures.

Three types of oscillation are met in quantum transport via mesosopic AB rings. The
magneto- and electro-oscillations have been studied by many authors, while the third kind,
due to variations in the electron energy, are studied in the present paper. We also discuss the
relationship between energy-induced and electro-oscillations, showing for singly connected
structures with equal numbers of chains that the energy-induced oscillation periodφE is the
exact doubling of the voltage-induced oscillation periodφV . Moreover, the energy-induced
oscillation pattern shows many very sharp peaks when the number of chains in the structure
considered increases. Structural variations are also expected to modify strongly the periodic
magneto-oscillation curves.

In summary, we have studied the quantum transport properties of various topological
mesoscopic ring structures joined at their ends to form ideal single-channel leads, with
and without the presence of impurities. The band formation is analysed and compared
with results for usual ordered singly connected systems, and we point out the essential
differences. We also discuss a relationship between the periods of the energy- and voltage-
induced oscillations, and display periodicity regularity for doubly connected AB rings. The
results presented in this paper are expected to be useful for purposes of band tailoring and
also for microelectronic device engineering.
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